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Abstract. A model consisting of atoms on a triangular lattice, with one degree of freedom, 
interacting with harmonic forces u p  to second neighbours and with a 44 on-site potential 
is studied. The system’s free energy is calculated using an independent site approximation 
and a quantum variational ‘ansatz’. Phase diagrams are constructed by minimizing the free 
energy, using the simulated annealing Monte Carlo method. They consist of I D  and ZD 
stable superstructures between which discommensurations intervene. The model is relevant 
to one degree of freedom systems as, e.g., free to rotate molecular groups. 

1. Introduction 

The competition between different ordering mechanisms in a system can result in a 
variety of phases which may range from commensurate, incommensurate, discom- 
mensurations and even spacially chaotic states. For example the anisotropic Ising 
model ( A N N N I )  (Elliot 1961) consists of a rather simple magnetic system, with compet- 
ing nearest and next-nearest neighbour interactions, which can reproduce many of the 
features encountered in real magnetic systems. Its phase diagram is very rich, presenting 
modulated structures (Selke 1988, Bak and von Boehm 1980), but its applicability to 
real non-magnetic systems, involving continuous lattice displacements, is limited due 
to the definite values spins can take. In lattice models a double well on-site potential 
with nearest and next-nearest neighbour interactions, despite its simplicity, allows both 
continuous displacements and bistable behaviour, so that it can describe a large variety 
of physical systems. The equivalence of this model to an Ising one with infinite range 
interactions, for one-dimensional systems has been proved by Axel and Aubry ( 1981). 
The physical origin of the C # J ~  nonlinear potential used can be attributed to either the 
substrate material, as in noble gas monolayers (Gordon and Villain 1985), or the 
sterical hindrance potential of NO, groups in NaNOz (Heine and McConnell 1984), 
or to the ion and its electronic shell nonlinear interaction in perovskites (Bilz er af 
1987), or to a molecular group free to rotate, as in biphenyl (Benkert et a1 1987) and 
LiIO, (Coquet et a1 1988). Furthermore it is of great importance to know the com- 
mensurate structures for a given model in order to describe various structural phase 
transitions into these states; one of the important transitions is the incommensurate- 
commensurate transition found in many crystals (see the various articles in vol I 1  of 
Blinc and Levanyuk 1986). An important example is K,SeO, which was studied 
theoretically some time ago (Bilz et a1 1982). There it was shown that the low 
temperature state with period 3 is a stable solution within the nonlinear model, 
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Although the C#J4 potential is sometimes approximated by a double quadratic one 
in order to facilitate analytical computations (Biittner and Heym 1987, Vlastou et a1 
1990), we study the problem here without these approximations. In a one-dimensional 
model with a single well C#J4 potential a number of commensurate phases were described 
by Frosch and Buttner (1985). We are here extending this work to a two-dimensional 
triangular lattice with a double well on-site C#J4 potential and first-second neighbour 
interactions. A quantum mechanical variational treatment is used to derive analytically 
the free energy. The numerical evaluation uses the simulated annealing Monte Carlo 
method, in order to construct the phase diagram of the system, which turns out to 
consist of a great variety of structures, commensurate or incommensurate. This multi- 
plicity in phases is attributed to competing mechanisms. The on-site potential tends 
to lock the atoms on the lattice sites, and the neighbouring interactions favour arbitrary 
configurations. The effect of temperature is also crucial here, because the interaction 
parameters are temperature dependent and thermal fluctuations act antagonistically 
to the ordering mechanisms. 

In section 2 we calculate the free energy of our model using a variational ‘ansatz’ 
and reduce the equations that will give us the temperature dependence of the variational 
parameters. In section 3 we use the simulated annealing Monte Carlo method (SAMC),  

to minimize the free energy and construct the phase diagrams. In the last section we 
summarize and discuss the results for the phase diagrams. 

2. Free energy evaluation 

The Hamiltonian of our two-dimensional triangular lattice model for the atomic 
displacement U,,,, normal to the surface, is: 

The first term is the kinetic energy operator of the atoms with mass M. The second 
and third terms are the potential energies for the harmonic nearest-( f l )  and next-nearest- 
( f 2 )  neighbour interactions (figure 2 ( b )  below). The last term is a double well on-site 
unharmonic C#J4 potential ( g o ,  g4> 0). The true independent parameters of our 
Hamiltonian are c1 = f l / 2 g o  and c2 = f 2 / 2 g o ,  if displacements are measured in units of 

Since we are interested in determining the ground-state structures for finite tem- 
peratures, we have to evaluate the free energy F of the system, which is not an easy 
task. Exact quantum mechanical calculation of the free energy has not been done for 
a nonlinear lattice, except for some completely integrable one-dimensional systems 
using the Bethe ansatz (Toda 1981). We are therefore forced to use an approximation, 
which is the independent-site appoximation improved by choosing different variational 
parameters at each site, for both the local oscillator frequency U,,,,  and the displacement 
an,,, of the oscillator. The idea is to approximate the true free energy F, from above, 
to first order, by the free energy of a known system Fo plus a correction term (Feynman 

and energies in units of g i / g 4 .  
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1974), 

F S F = Fo + ( H  - Ho)o, (2) 

This is usually referred to as the 'minimum principle', since it sets an upper bound to 
F. The Hamiltonian Ha, which is used for comparison with H, is that of a set of 
independent displaced harmonic oscillators: 

It has been shown by Feynman and Kleinert (1986) that the true value of the free 
energy is almost identical to at high temperatures and differs from it a few percent 
as temperature lowers. A further improvement of the method is the choice of more 
elaborated trial functions Ho so that the second term in ( 2 )  vanishes (Giachetti et a1 
1988). 

is calculated with the known 
harmonic density matrix of Ha : 

The expectation value in equation ( 2 )  noted as (. . 

(4) 

where we have set for simplicity h = M = 1 and 7 = k B T /  f i .  After simple but lengthy 
calculations we arrive at the free energy expression as a function of an,,, and w,,, ,  

e-w tanh(w/2r )y2  

wn,m 1 2 7  ln(1- e-(wv,m/~)) -EL ( a ( N N ) - a n , m ) 2 + -  

where (NN) and (NNN) denote summation over first and second neighbours to the 
( n ,  m )  atom respectively, while we define: 

yn,,,  = U,,,,  tanh( 2). 
The variational parameters are then determined by an extrema1 condition at each 
site: d F / d a n , ,  = 0, aF/dw,,,  = 0 and they are as follows: 

These equations are a coupled nonlinear discrete system, where the first one contains 
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a fourth-order recurrence relation for a,,, but the second one can easily be solved for 
a~.,(u,,,). For those low periodicities, for which the different average atomic positions 
are not more than two, the above equations can be reduced to a rather simple system 
of nonlinear equations. In the appendix we give the respective equations for some 
simple structures: para-electric, 1 x 1, 2 x 1, 3 x 1 symmetric and 4 x 1. 

Solving the above nonlinear equations we can determine the periodic structure with 
the lowest free energy. This allows us to construct a phase diagram in the three- 
parameter space ( c1, c2 and temperature T ) ,  or more conveniently in the two-parameter 
( c1 and T )  space by keeping c2 constant. The numerical solution though of the equations 
is only practical for the above mentioned low periodicities. For higher periodicities, 
however, of the type N x 1 (for N >  4) or  N x M (for N, M 2 2 ) ,  an  alternative 
approach is to directly minimize the free energy using the powerful simulated annealing 
Monte Carlo method (SAMC) (Kirkpatrick er a1 1983). This method has the advantage 
of locating the global minimum of a multivariable function. The method involves a 
search over the configuration space with a specific procedure that ensures the possibility 
to escape from local minima in the search for the global minimum. The success of this 
search depends strongly on the procedure and  the criteria are described elsewhere 
(Vlastou et a1 1990). 

Our phase diagrams are thus constructed by scanning the ( c l ,  c2,  T )  space by the 
SAMC method and finding at each point the periodic structure that corresponds to the 
global minimum. One-dimensional structures were checked, using different initial 
conditions and  search patterns for different SAMC parameters, up  to period 15 x 1 and  
two-dimensional up  to 3x3. At very low temperatures there are many competing 
structures which lie close in configuration space and are separated by large barriers. 
Thus SAMC search patterns must be adjusted to avoid convergence problems (e.g. 
increase the initial fictitious temperature and  reduce the displacement step). Where 
possible, diagram points were double checked by the direct numerical solution of the 
set of nonlinear equations for the known structures. Results obtained by both methods 
are identical. 

3. The phase diagrams 

Since both force constants c, and  c2 are independent parameters in our model, the 
(c1, T) phase diagrams were made for the three representative values of c2: 0.2, -0.2, 
-0.5 in order to reveal a complete picture of the effect of temperature on the lattice. 

(a) c2 = 0.2. Figure 1 presents the phase diagram for c2 = 0.2, which appears rather 
simple containing only three periodic structures. The period 1 x 1 and symmetric 3 x 3 
(also given as 4 x 8  shown in figure 2 ( a ) )  structures are expected here since they 
dominate the 7 = 0 classical diagram presented in (Vlastou et a1 1990) (figure 2) for 
the respective c1 and c2 values. What is new here is the existence of the so-called 
para-electric phase, which is characterized by an  average displacement zero ( c y  = 0) 
for each atom. This phase is found to be the ground state for high temperatures, since 
the kinetic energy provided by the temperature raises the atoms above the potential 
barrier, visiting both wells, with their average position at a = O .  When c, is negative 
enough, structures with opposite average displacements for nearest neighbours become 
antagonistic, and  as a result of this, the a x &  structure in figure 1 remains ground 
state for high temperatures. Using a simple mean-field approximation (Janssen and  
Tjon 1982) we can show that effectively the force constants c,  and c2 increase with 
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Figure 1.  Phase diagram in the 7, c, plane for c2 = 0.2. 
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Figure 2. ( a )  The q ' 3 ~ 4 2  structure with its unit cell. ( b )  The l o x  1 I D  structure. 
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increasing temperature. Indeed, the atoms move towards the centre of the potential 
barrier as c1 or temperature increases. 

Our calculation of the free energy has included quantum effects as for example the 
zero point motion at T = 0. Therefore we expect a discrepancy between the classically 
obtained T = 0 phase diagram presented in Vlastou e? a1 (1990) paper, and the corre- 
sponding results presented here. Actually, the point c ,  = 0 ,  T = O  in figure 1 does not 
separate the two phases 1 x 1 and & x &  as was found in the classical case. There is 
a gap between the two phases occupied by the a = 0 phase even as low temperatures 
as T + 0, which means that the effective potential has only one minimum at a = 0. 

(b)  c2 = -0.2. For this choice of c2 the phase diagram shown in figure 3 displays 
the great variety of phases that can appear there. Starting from negative c, values we 
note how the 2 x 1 structure persists for very high temperatures despite the strong 
thermal fluctuations. This is achieved by the strong and opposite neighbouring displace- 
ments that keep the atoms, on the average, the furthest apart. The symmetric 3 x 1 
(+O-)  phase appears over certain temperatures where 3 x 3 (asymmetric) and  3 x 1 
(++-) no longer are ground states. It is astonishing to see the regular succession of 
superstructures, for c1 > 0, starting from 3 x 1 u p  to 8 x 1, for very low temperatures. 
The respective region in the classical T = O  diagram was difficult to reveal clearly 
because the energy minima were close by. The configurations of these periodicities 
( I D  structures for 4s N S 8)  are: for N even N / 2  successive positive mean displace- 
ments and  N / 2  negative ones. For N odd: ( N  - 1)/2 successive positive followed by 
( N  + 1)/2 negative ones. As a result of this the coordination numbers n ,  and n,  defined 
as the average number of opposite neighbours (first and  second) per site, are n ,  = 4/ N 
and n ,  = 8/ N. Configurations of higher periodicity ( N  > 8) were found for higher 
temperatures ( T > 0.2) and  in the border lines between the superstructures. They are 
usually described (Janssen 1986) as a series of integers indicating the number of 
consecutive particles with the same sign of the solution. For example, the structure 
l o x  1 (shown in figure 2(b)) with signs of displacements as (++--+--++-) will be 
indicated as (221)2. The configurations of all these periodic structures appearing for 

3 . \, 

para 

x I ?h;. ( 
32 $43 

- 0  2 0 0 2  0 4  0 6  0 8  
C.1 

Figure 3. Phase d iagram in the 7, c ,  plane for c2 = -0.2. Structures '  notation is explained 
in the text. 
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c, > 0 .2 ,  are such that n, = 2 n , ,  due to the fact that no less than two consecutive particles 
have the same sign for the displacement. An exception is the 7 x 1 structure found 
between 3 x 1 and 4 x 1, for which n ,  = $, n2 = 2.  For a discussion of similar structures 
in ANNNI-like models see the current state of the art review by Selke (1988), where 
the complicated issue of the appearance of commensurate and incommensurate states 
is discussed. 

The para-electric phase is unstable classically at absolute zero and therefore it never 
appeared in the r = 0 classical diagram. Here, there is a small interval for 0.50 < cI < 0.58 
at very low temperatures, where the para-phase is ground state. 1 x 1 then follows for 
c, > 0.58 and evolves to the a = 0 state with increasing temperature. Strong first 
neighbouring attraction seems to favour the 1 x 1 configuration as ground state, up to 
high temperatures. 

Direct solutions of our system of nonlinear equations provide us with the three 
graphs presented in figure 4 where the variational parameters a and w as well as the 
free energy are plotted against c, + c2 for the structures 2 x 1, 1 x 1 and a = 0. What is 
evident here is that: ( a )  the 2 x 1 structure exists as a solution of the respective equations 
and is stable (as will be explained later), only up to cI + c, = -0.1 for T = 0.2 which is 
in agreement with its being ground state well below this limit; ( b )  the 1 x 1 state does 
not exist as a stable structure below c, + c2 = 0.38 at T = 0 .2  and has actually a lower 
free energy than the a = 0 phase for c, + c, > 0.38. This is in good agreement with the 
phase diagram of figures 1 and 3 but also makes a prediction about our next phase 
diagram of figure 6 for c2 = -0.5, that 1 x 1 will appear as ground state (compared with 
a = 0) at c, > 0.88. ( c )  While the mean atomic displacements for 1 x 1 emerge from 
zero and increase with c, + c2,  the respective a for the 2 x 1 structure never becomes 
zero due to the repulsive interaction that prevents the atoms to move towards the 
centre of the double well. This is the physical reason behind the existence of a 5 x 1 
( 2 0 2 )  structure, with an atomic mean displacement very close to zero, in the border 
of 2 x 1 with 3 x 1 symmetric (101) or the para-phase. 

The diagrams presented in figure 5 show us the explicit dependence of our 
parameters a, w and the free energy, on the temperature for the 1 x 1 and 2 x 1 structures. 
The high temperature limit is more conveniently displayed by plotting l / r  instead 
of 7. 

(c) c2 = -0.5. Our last phase diagram of T against c, for fixed c2 = -0.5 is presented 
in figure 6. The superstructures found here extend up to period 15, while the discom- 
mensurations intervene them. In order to better describe and give some insight to the 
occurrence of the periodic structures, we introduce the wavevector q = 2 m /  N for a 
modulation a ,  (index m is omitted since we are concerned only with I D  structures in 
this part of the diagram and lattice spacing is taken as 1) (Janssen 1986). The number 
2 s  is the number of sign changes within one period consisting of N atoms. A solution 
though is not uniquely determined by its wavevector 4 or q,, = s/ N (half the number 
of sign changes per atom). 

It has been very useful to plot the average number of opposite sign neighbours n ,  
and n,  for the 1 - d structures of the triangular lattice, against the number s/ N, as 
shown in figure 7. All the periodic structures, irrespectively of their configuration, seem 
to have their coordination number n ,  lying on a straight line with slope 4. The second 
neighbour coordination number n, for all the structures seems to cover all the space 
(for N + CC) between the n ,  line, the limiting n2 line with slope 8 and the line n,  = 2 .  
Let us remark on certain points which are of interest in this diagram. ( a )  The period 
1 structure and the para-phase are at the origin of figure 7 .  ( b )  2 is the maximum 
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Figure 5. Plot of CY, w and F as functions of 1/ 7 for c, + c2 = 0.6,0.9 for the 1 x 1 periodicity. 

number of average opposite sign neighbours one atom can have. ( c )  n ,  is always less 
than n2 and the maximum value n,  can take is 2 n , .  ( d )  n 2 = 2 n ,  can occur only to 
structures of s/ N s $. ( e )  Structures with the same s/ N number may or may not have 
the same n , .  

The basic features of the dependence of n ,  and n,  on s / N  are closely related to 
the phase diagrams of our  model. Let us take for example the sequence of periodic 
structures close to the curve, which is the limit of the para-phase for c, > 0. The 
structures found as ground states with increasing c, > 0 lie exactly on the lines n ,  = 
4(s/ N )  and n,  = 8(s/  N )  for s/ N si.  The ratios s/ N can be generated as rational 
numbers between two fractions in the following way. Start with i / j  and k / l  and produce 
( i + k ) / ( j + l )  and ( i + 2 k ) / ( j + 2 1 )  and ( 2 i + k ) / ( 2 j + l )  and iterate this procedure 
infinitely many times (Axel and  Aubry 1981). Similarly, the structures found for 
0 < c, < 0.4 are those in the graph of figure 7 with n,  = 2 and for a c s/ N c f . 
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Figure 6. Phase diagram in the T, c ,  plane for c2 = -0.5. 
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s / N  

Figure 7. Plot of the 'coordination' numbers n ,  and nz against s / N  for the triangular 
lattice. The fractions on the top of the diagram indicate the s/ N of the structures found 
in our phase diagrams and whose n ,  and nz follow the enclosing triangle. 

The physical reason behind the occurrence of those specific periodic structures in 
our  phase diagram (among hundreds), whose n2 numbers follow the limiting lines 
n2 = 8( s/ N )  and n, = 2, is that since they occur for increasing c, > 0 values they must 
have the minimum n ,  value and  the maximum n2 value in order to reduce their free 
energy. Also a prediction can be made, considering the specific configurations of those 
structures, if we are to further investigate our phase diagrams for higher periodicities 
and  finer c, grid. 
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4. Concluding remarks 

Using a variational principle we derive simple analytic expressions for the free energy 
of a one-component coupled atomic system with a bistable substrate. The thermal 
averages can be done analytically for a large class of bistable substrates, but we only 
considered the 44 case, because it is simple and  there exist calculations to compare 
with ID.  For a more general substrate, if it is also steep for large displacements, we 
d o  not expect qualitative differences. This does not include the cos U term as in the 
2~ version of the Frenkel-Kontorova model [Vlastou er a1 19901. The variational 
principle used, is better than mean field since it uses both static and  dynamic quantities 
as variational parameters, i.e. the average position and  the local oscillation frequency 
of a set of effective oscillators, which to first approximation can be considered indepen- 
dent, but variationally connected. The variational parameters are determined by direct 
minimization of the free energy, using the simulated annealing Monte Carlo method, 
which has proved very efficient to find the global minimum subject to the boundary 
conditions only, i.e. finite size. 

We have determined the ground states for a range of temperatures which appear 
in the phase diagrams as a series of periodic structures consisting of commensurate 
(superstructures) in one- and  two-dimensions and  discommensurations in I D. The 
different parameters of our  model may correspond to different materials or varying 
pressure. Discommensurations occur as an  intermediate phase between two superstruc- 
tures. They are characterized by a piecewise nearly constant phase function and they 
can be seen as the nucleus for the formation of a domain wall related to the periodic 
structure it contains. All the structures found are I D  except the A x & ,  and a 3 x 3  
structure, even though other 2~ structures were searched for. This result is in agreement 
with previous work on the corresponding classical model at 7 = 0 (Vlastou et a1 1990). 
In a triangular Ising model in a field with nearest- and second-nearest-neighbour 
interactions (Kaburagi et a1 1974), the only other structure was 2 x 2  between the 
& x &  and  the 3 x 1 structures. For the range of parameter values considered it was 
never the ground state in our case. In a study of the classical Heisenberg and planar 
model ( X Y )  (Katsura et a1 1986), a weak constraint condition wasused in the Fourier 
components of the spin length instead of the unit length spin. This allowed an  analytic 
solution for the problem and then of course it was verified that the ground states 
satisfied on top  the strong constraints. There again no 2~ structures, except the f i x  &, 
were found. 

We have also investigated large complicated structures consisting of 3 x 3 domains, 
separated by domain walls whose core is 2 x 2. They were found to be stable but never 
the ground state. We have no definite answer why there are no more 2~ structures, 
except to point out the higher degree of frustration that one has to cope with in 2~ 

structures. By considering also the n, and n, numbers one can easily conclude that in 
the region where a x &  is the ground state, it is unlikely that any other 2~ similar 
structure has lower energy. Of course one must take also into account configurational 
entropy, which should be larger for the 2~ patterns, so that they could become important 
at  high temperatures, and  that is the reason we looked at the large size patterns. It is 
also possible that the lattice symmetry plays a role, and  in fact for an  inhomogeneous 
model more complicated structures could appear. This question is under inevestigation. 

Just below the critical temperature (above which the para-phase is ground state) 
in the phase diagram shown in figure 6, there are infinitely many phases in the limit 
N + m .  So, if one increases the resolution of the parameter c , ,  one finds that the 
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interval over which a structure with a given wavevector of s / N  is the ground state, 
becomes narrower and  one can find always a value of c, for which a given wavevector 
is the wavevector of the ground state. Therefore the line is practically covered by 
periodic structures whose s/ N numbers (or wavevectors) are rational and spaced 
infinitely close to one another. An irrational number could be approximated by a 
nearby rational corresponding to large N, and the corresponding structure should be 
looked for near the disorder limit, where the structures become dense in the interaction 
parameter space. In our  case with maximum N = 15 we cannot describe well the 
structure near an  incommensurate one. Our model though, satisfies the conditions set 
by (Janssen 1986), in order to have an incommensurate phase: ( a )  there is interaction 
at least u p  to second neighbours; ( b )  there is competition (c,, c2) and ( e )  there is a 
nonlinear interaction ( 4 ~ ~ )  for the stabilization, which is in competition with interparticle 
forces. In figure 8 a plot is presented of the wavevector q or s/ N against c, (it could 
also be another parameter of the model) for 7 = 0.5 and  c2 = -0.5. Periodicities up  to 
3 0 ~  1 were examined over a range of c, values. The diagram clearly reveals a part of 
a ‘devil’s staircase’, which seems to continue for larger values of c, , Whether the ‘devil’s 
staircase’ at this temperature is complete or incomplete cannot be determined from 
our calculations since it is very difficult to find. 
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C: 

Figure 8. Plot of s/ N against c ,  showing a ’ d e v i l ’ s  s ta i rcase’  for c2 = -0.5 at i = 0.5. 

Our method cannot determine incommensurate structures. Even the discrete map- 
ping method (in I D )  (Jensen et a1 1984), is plagued by numerical errors. One way used 
in the literature to decide, therefore, whether your system accepts incommensurate 
structures is to look for a ‘devil’s staircase’ and determine whether it is complete or 
incomplete. In our case with maximum N = 30 and  low T = 0.5 the existence of an  
incommensurate state cannot be concluded. It is known from other models, however, 
that there exists a finite temperature where incommensurate states first appear, but it 
is usually very elaborate to find this temperature even in the mean field (Selke 1988). 

The free energy calculations can be improved at low temperatures, as was done in 
Gianchetti et a1 (1988), by the introduction of an  effective potential. This will include 
the smearing out of the nonlinear potential due to the quantum fluctuations. This 
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correction is not important at high temperatures and at any temperature for narrow 
potentials (high U ) .  

The linear stability of the structures found is not possible to be directly checked. 
The SAMC method used though, due to its random sampling alogorithm, provides us 
with structures that are stable against small oscillations. The positiveness of the effective 
oscillator strength wn, ,  is a sufficient but not necessary condition for stability. It is 
certain of course that the structures found as ground states have U,,,, > 0. 

One example of a magnetic system where several commensurate phases have been 
observed is CeSb (Fisher et a1 1978). In a temperature range from 16.1-2.2 K, six 
structures were found, by neutron diffraction, their s/ N numbers being (with reducing 
temperature) i, A ,  f , A, & and 4 ,  (containing several zero displacements). If we follow 
a line in figure 7 connecting ( c1 = 0, T = 7.5) and ( c1 = 0.7, T = 1 . 5 )  we go through the 
following sequence of structures: 4, &j, +, &, t .  Rare earth compounds have been 
found, whose phase diagrams exhibit a ‘devil’s staircase’ part, that may correspond to 
an incommensurate phase or even a chaotic regime (Bak 1982). The existence, however 
of chaotic states has been questioned by Aubry (1983), due to the inaccuracies in the 
numerical solution of the mapping method (if a large number of iterations is involved) 
since the chaotic states correspond to positive Liapunov exponents. They should not 
be expected to be ground states since they correspond to unstable situations. 

The natural next step in extending our model is to consider atoms having two 
degrees of freedom. This can be relevant in explaining the @-phase of LiI03 and give 
a better insight into the incommensurate phase of biphenyl, which has been so far 
considered as a one degree of freedom system (Benkert et a1 1987). 

Appendix 

In the following we present the equations for the free energy (per site) and its variational 
equations for a,,, and U,,,,  in the cases of a = 0, 1 x 1,  2 x 1 and 4 x 1 periodicities. 

( a )  Para-phase, an,, = 0: 

2 F = w + 2 7 In ( 1 - e - ( w ~ l , ~ ~ ~ ’ T ) )  + 6( c1 + c2) + go - w + ”1 ( A  1 ) 
2g4 2Y 4Y 

( b )  Period 1 :  

6( ~1 + ~ 2 )  +go+ 3g4a2 +-- w 
3g4  4 Y  ’I 



4566 G Mastou-Tsinganos, N Flytzanis and H Buttner 

(c) Period 2 ( + - ) :  
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